A Closer Examination of Extreme Value Theory Modeling in Value-at-Risk Estimation

نویسنده

  • Wei-han Liu
چکیده

Extreme value theory has been widely used for modeling the tails of return distribution. Generalized Pareto distribution (GPD) is popularly acknowledged as one of the major tools in Value-at-Risk (VaR) estimation. As Basel II stipulates the significance level for VaR estimation from previous 5% quantile level to more extremal quantile levels at 1%, it demands a more accurate estimation approach. It is imperative to take a closer examination at GPD modeling performance at more extremal quantile levels. Empirical analysis outcomes show the acknowledged outperformance of GPD is sustained at 5% quantile level but not at 1% level. Alternative methods are proposed and the empirical outcomes indicate that both the penalized spline smoothing in semiparametric regression and maximum entropy density based dependent data bootstrap outperform GPD in modeling extremal quantile levels lower than 1%.

منابع مشابه

Value at Risk Estimation using the Kappa Distribution with Application to Insurance Data

The heavy tailed distributions have mostly been used for modeling the financial data. The kappa distribution has higher peak and heavier tail than the normal distribution. In this paper, we consider the estimation of the three unknown parameters of a Kappa distribution for evaluating the value at risk measure. The value at risk (VaR) as a quantile of a distribution is one of the import...

متن کامل

Presenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets

Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...

متن کامل

An evolving possibilistic fuzzy modeling approach for Value-at-Risk estimation

Market risk exposure plays a key role for financial institutions risk management. A possible measure for this exposure is to evaluate losses likely to incur when the price of the portfolio’s assets declines using Value-at-Risk (VaR) estimates, one of the most prominent measure of financial downside market risk. This paper suggests an evolving possibilistic fuzzy modeling approach for VaR estima...

متن کامل

Managing extreme risk in some major stock markets: An extreme value approach

Article history: Received 10 May 2013 Received in revised form 2 September 2014 Accepted 2 September 2014 Available online 11 September 2014 The study investigates the relative performance of Value-at-Risk (VaR) models using daily share price index data from six different countries across Asia, Europe and the United States for a period of 10 years from January 01, 2000 toDecember 31, 2009. Them...

متن کامل

Estimation of Value at Risk (VaR) Based On Lévy-GARCH Models: Evidence from Tehran Stock Exchange

This paper aims to estimate the Value-at-Risk (VaR) using GARCH type models with improved return distribution. Value at Risk (VaR) is an essential benchmark for measuring the risk of financial markets quantitatively. The parametric method, historical simulation, and Monte Carlo simulation have been proposed in several financial mathematics and engineering studies to calculate VaR, that each of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007